plot(np.array([]))๐ View as a histogram
plot
plot (x:numpy.ndarray, center:str='zero', max_s:int=10000, plt0:Any=True, ax:Optional[matplotlib.axes._axes.Axes]=None, ddof:int=0)
| Type | Default | Details | |
|---|---|---|---|
| x | ndarray | Your data | |
| center | str | zero | Center plot on zero, mean, or range |
| max_s | int | 10000 | Draw up to this many samples. =0 to draw all |
| plt0 | Any | True | Take zero values into account |
| ax | Optional | None | Optionally, supply your own matplotlib axes. |
| ddof | int | 0 | Apply bias correction to std |
| Returns | PlotProxy |
np.random.seed(1)
x = np.random.randn(100000)+3
plot(x)plot(x, center="range")plot(x-3, center="mean")plot(np.minimum(x-3, 0))plot(np.maximum(x-3, 0), plt0=0)# Very large outliers - don't print all sigmas
x2 = x.copy()
x2[0] = 1000
plot(x2, center="range")fig, (ax1,ax2) = plt.subplots(2, figsize=(6, 4))
fig.tight_layout()
plot(x, ax=ax1)
plot(np.zeros(100), ax=ax2);