source
Lo
Lo (x:Union[numpy.ndarray,numpy.generic], plain=False, verbose=False,
depth=0, color:Optional[bool]=None)
Lo and behold! What a lovely numpy.ndarray
!
x |
Union |
|
Your data |
plain |
bool |
False |
Show as plain text - values only |
verbose |
bool |
False |
Verbose - show values too |
depth |
int |
0 |
Expand up to depth |
color |
Optional |
None |
Use ANSI colors |
source
lo
lo (x:Union[numpy.ndarray,numpy.generic], plain:bool=False,
verbose:bool=False, depth:int=0, color:Optional[bool]=None)
x |
Union |
|
Your data |
plain |
bool |
False |
Show as plain text - values only |
verbose |
bool |
False |
Verbose - show values too |
depth |
int |
0 |
Expand up to depth |
color |
Optional |
None |
Use ANSI colors |
Examples
t = np.array([[1,2,3], [4,5,6]])
t
array([[1, 2, 3],
[4, 5, 6]])
array[2, 3] i64 n=6 xโ[1, 6] ฮผ=3.500 ฯ=1.708 [[1, 2, 3], [4, 5, 6]]
array([[1, 2, 3],
[4, 5, 6]])
array([[1, 2, 3],
[4, 5, 6]])
array[2, 3] i64 n=6 xโ[1, 6] ฮผ=3.500 ฯ=1.708 [[1, 2, 3], [4, 5, 6]]
array[3] i64 xโ[1, 3] ฮผ=2.000 ฯ=0.816 [1, 2, 3]
array[3] i64 xโ[4, 6] ฮผ=5.000 ฯ=0.816 [4, 5, 6]
lo(t[None]).deeper(2) # We need to go deeper
array[1, 2, 3] i64 n=6 xโ[1, 6] ฮผ=3.500 ฯ=1.708 [[[1, 2, 3], [4, 5, 6]]]
array[2, 3] i64 n=6 xโ[1, 6] ฮผ=3.500 ฯ=1.708 [[1, 2, 3], [4, 5, 6]]
array[3] i64 xโ[1, 3] ฮผ=2.000 ฯ=0.816 [1, 2, 3]
array[3] i64 xโ[4, 6] ฮผ=5.000 ฯ=0.816 [4, 5, 6]
in_stats = ( (0.485, 0.456, 0.406), # mean
(0.229, 0.224, 0.225) ) # std
image = np.load("mysteryman.npy").transpose(1,2,0)
lo(image)
array[196, 196, 3] f32 n=115248 xโ[-2.118, 2.640] ฮผ=-0.388 ฯ=1.073
spicy = image.flatten()[:12].copy()
spicy[0] *= 10000
spicy[1] /= 10000
spicy[2] = float('inf')
spicy[3] = float('-inf')
spicy[4] = float('nan')
spicy = spicy.reshape((2,6))
lo(spicy)
array[2, 6] f32 n=12 xโ[-3.541e+03, -1.975e-05] ฮผ=-393.848 ฯ=1.113e+03 +Inf! -Inf! NaN!
# image = np.zeros((196,196,3))
# image[:75,::2,:] = 1
# image[75::2,:,:] = 1
lo(image).rgb #.fig.savefig("output.png", metadata={"Software": None})
lo(image).rgb(scale=2, denorm=in_stats)
array[196, 196, 3] f32 n=115248 xโ[-0.135, 1.292] ฮผ=0.384 ฯ=0.322
x = np.random.randn(100000)+3
lo(x).plt(center="mean")